Сложные симметричные рисунки – Симметричные рисунки — современные методы развития и коррекции


17.10.2020 Facebook Twitter LinkedIn Google+ Советы художника


Рисуем симметричные фигуры

Мы с вами уже разобрали способы  построения симметричных фигур. Вспомним: на глаз (наиболее творческий но сложный) или с помощью линейки. Можно ещё отмеряя карандашом - этот способ наименее удачный, хуже только мерить пальцами.

Сегодня начнём с дорисовывания симметричного узора.

Как действовать будем? Сначала пусть на-глазок.

И сейчас расскажу вам про ещё один простой, но эффективный способ измерения. Если узор у нас слишком сложный, проверим свой глазомер с помощью полоски бумаги, которая заменит нам сегодня линейку. Размеры различных деталей мы можем отмечать, делая засечки!

Отметили длину детали и далее сравним с нашими предварительными набросками:

Ну,что я вижу: точка, нарисованная на-глазок оказывается чуть-чуть не на месте. Что ж, придётся передвинуть - в соответствии с более точными измерениями.

Продолжим проверку точности:

 

Отличный, хорошо проверенный способ когда нет линейки.

Что ж, вполне похоже получилось. Узорчик что надо.

Ладно, теперь ещё применим наши уменья и навыки для построения  симметричных фигур на доске. Дело это посложнее будет из-за крупных размеров.

Условное ведро нарисовали. Усложним задачу. Дано: половина крынки.

Я старалась. И, нарисовав, оценивала результаты и рассматривая вблизи и издали. Но, вот ведь, не стоит быть слишком самоуверенной - на фотографии видно, что крыночка слегка завалилась. Ладно, я не упираюсь - важно уметь признать свои ошибки и избегать повторения впредь.

 

 

Как нарисовать симметричный предмет или фигуру вам рассказала Марина Новикова.

Уменье правильно рисовать симметричные предметы нам много раз пригодится. Например:

Когда будем  работать с раскрасками "Посуда"

Рисовать узоры(цветы)


Метки: практические советы, симметрия как рисовать

Читайте также:

Google+

Марина Новикова

handykids.ru

ОСНОВЫ КОМПОЗИЦИИ: Равновесие (симметрия и асимметрия)

04 Мая 2016

Из первой части статьи мы знаем что такое равновесие в фотографии и что оно является одним из наиболее важных элементов композиции. Размеры, характер и расположение в пространстве элементов композиции должны быть подчинены зрительному равновесию. Но вот как сбалансировать изображение, какие есть способы - рассмотрим в этой статье.

СИММЕТРИЯ

Симметрия - это наиболее очевидный и простой способ достичь композиционного равновесия. Симметрия прослеживается во всем: в природе, в строении человеческого тела, в предметах повседневной жизни.

Не все уравновешенные или сбалансированные фотографии симметричны – все симметричные композиции по умолчанию находятся  в равновесии.

Фото: Robert Biondo

Симметричное равновесие на фотографии достигается тогда, когда объекты с одинаковым визуальным весом будут размещены равноудалённо от центра изображения. Но, создавая такую композицию, необходимо учитывать, что нарушить равновесие может даже небольшой элемент, присутствующий на одной из частей композиции, но отсутствующий на другой. Композиция уже не будет восприниматься симметричной - появится дисбаланс и визуальное напряжение. Происходит это от того, что при восприятии симметрии наш мозг устанавливает определённый ритм объектов и интервалов между ними, предполагает наличие определённой последовательности и интервала. А если этого не происходит - испытывает беспокойство.

Фото: Bramham

В фотографии наиболее часто используются три вида симметрии:

  • Зеркальная (двусторонняя). Как уже понятно из названия, в основе лежит равенство двух частей композиции, которые расположены по разные стороны центральной оси снимка и являются практически зеркальными отражениями друг друга. Ориентация оси может быть как вертикальная, так и горизонтальная. Симметрию называют чистой, если две половины композиции отражают друг друга абсолютно точно. Но в природе такое встречается достаточно редко, ведь ни для кого не секрет, что даже человеческое тело не полностью симметрично. В большинстве случаев мы имеем дело с неполной симметрией - когда отражения не полностью идентичны и имеют незначительные отличия.

Фото: Hesham Alhumaid

 

 Фото: Stefan Krebs

 

Фото: Bildwerker Freidburg

 

Фото: Davor Plesa

  • Радиальная (лучевая или круговая). В её основе лежит равное удаление всех элементов композиции относительно центральной точки (или общего центра). Количество объектов, как и угол их расположения относительно центра, могут быть различны. Главное понимать, что пока есть некий общий центр - симметрия сохраняется.

 

Фото: Victor Mozqueda

 

Фото: Markus Studtmann

  • Трансляционная (кристаллографическая). Это вид симметрии, в которой элементы композиции повторяются через определенные промежутки. Как пример - колонны или окна здания. В трансляционной симметрии ключевую роль играет совпадение направления элементов. С помощи такой симметрии можно создать ритм, движение, показать скорость или очень динамичное действие.

 

Фото: Hans Wolfgang Hawerkamp

 

Фото: Massimo Cuomo

АСИММЕТРИЯ

Асимметрия - это отсутствие или нарушение симметрии. Но это вовсе не значит, что асимметрия – это отсутствие равновесия композиции.

Асимметричное равновесие достигается тогда, когда элементы композиции, находящиеся по разные стороны от центра, имеют одинаковую визуальную массу. Достичь равновесия при помощи асимметрии сложнее, чем в симметричной композиции, так как между композиционными элементами более сложные пространственные отношения. Асимметричное равновесие более динамичное и интересное для привлечения внимания, чем симметричное.

Фото: Josef Sieberer

 

Фото: Uros Podlogar

Фото: Ute Scherhag

С его помощью можно дать ощущение движения, жизни и энергии. И если симметричная композиция воспринимается "как есть" - легко и сразу, то асимметричную нужно "читать" постепенно. Асимметричное равновесие сложнее построить, но у него есть огромное преимущество - оно оставляет нам большой простор для творчества.

Применяя знания на практике, вы можете совмещать симметрию с асимметрией и добиваться прекрасных результатов и привлекать больше внимания. Вот несколько примеров:

  • композиция приближается к абсолютной или чистой симметрии:

Фото: Stefan Neuweger

Фото: C.S. Tjandra

Фото: Karthi KN Raveendiran

  • симметричное равновесие асимметричных форм:

Фото: Jozef Kiss

Фото: Christian Muller

Фото: Ute Scherhag

Фото: Suzy Mead

  • асимметричная в целом композиция состоит из симметричных частей:

Фото: Ali Ayer

 

Фото: Jacqueline Hammer

Фото: Jacqueline Hammer

 

Фото: Plosz Zoltan

  • композиция может быть и в целом, и в деталях полностью асимметрична:

 

Фото: E. Amer

 

Фото: Piet Haaksma

 

Фото: Vedran Vidak

Фото: Knut Borge Strom

Сталкивая симметрию с асимметрией, необходимо помнить, что:

  • визуальная масса симметричной фигуры будет больше, чем масса асимметричной фигуры подобного размера и формы;
  • симметрия создаёт баланс сама по себе и, как правило, считается красивой и гармоничной. Но есть и обратная сторона медали - она зачастую лишена динамики и может показаться статичной и скучной;
  • асимметрия, как антипод статичной симметрии, обычно привносит в композицию динамику.

Симметрия и асимметрия окружают нас каждое мгновение в повседневной жизни, понятие данных терминов позволяет более осознанно и гармонично наблюдать за красотой окружающего мира и позволяет создавать неповторимые фотографии!

Читайте ещё о композиции в других наших статьях:

Золотое сечение в фотографии

Сила линий в фотографии

Формат кадра в фотографии

Контраст в фотографии (Часть 1)

Контраст в фотографии (Часть 2)

Точка съемки и выбор плана

Ракурс

Геометрия в фотографии

photodzen.com

Симметрия и её виды | Обучонок

1. Симметрия и ее виды

Понятие симметрии проходит через всю историю человечества. Оно встречается уже у истоков человеческого знания. Возникло оно в связи с изучением живого организма, а именно человека. И употреблялось скульпторами ещё в 5 веке до нашей эры. Слово “

симметрия” греческое, оно означает “соразмерность, пропорциональность, одинаковость в расположении частей”.


Его широко используют все без исключения направления современной науки. Немецкий математик Герман Вейль сказал: “Симметрия является той идеей, посредством которой человек на протяжении веков пытался постичь и создать порядок, красоту и совершенство”. Его деятельность приходится на первую половину ХХ века. Именно он сформулировал определение симметрии, установил по каким признакам усмотреть наличие или, наоборот, отсутствие симметрии в том или ином случае. Таким образом, математически строгое представление сформировалось сравнительно недавно – в начале ХХ века.

1.1. Осевая симметрия

Две точки А и А1 называются симметричными относительно прямой а, если эта прямая проходит через середину отрезка АА1 и перпендикулярна к нему (Рисунок 2.1). Каждая точка прямой а считается симметричной самой себе.

Фигура называется симметричной относительно прямой а, если для каждой точки фигуры симметричная ей точка относительно прямой a также принадлежит этой фигуре (Рисунок 2.2).

Прямая а называется осью симметрии фигуры.

Говорят также, что фигура обладает осевой симметрией.

Осевой симметрией обладают такие геометрические фигуры как угол, равнобедренный треугольник, прямоугольник, ромб (Рисунок 2.3).

Фигура может иметь не одну ось симметрии. У прямоугольника их две, у квадрата – четыре, у равностороннего треугольника – три, у круга – любая прямая, проходящая через его центр.

Если присмотреться к буквам алфавита (Рисунок 2.4)., то и среди них можно найти, имеющие горизонтальную или вертикальную, а иногда и обе оси симметрии. Объекты, имеющие оси симметрии достаточно часто встречаются в живой и неживой природе.

Имеются фигуры, у которых нет ни одной оси симметрии. К таким фигурам относятся параллелограмм, отличный от прямоугольника, разносторонний треугольник.

В своей деятельности человек создаёт много объектов (в том числе и орнаменты), имеющих несколько осей симметрии.

1.2 Центральная симметрия


Две точки А и А1 называются симметричными относительно точки О, если О - середина отрезка АА1. Точка О считается симметричной самой себе (Рисунок 2.5).

Фигура называется симметричной относительно точки О, если для каждой точки фигуры симметричная ей точка относительно точки О также принадлежит этой фигуре [1].

Простейшими фигурами, обладающими центральной симметрией, является окружность и параллелограмм (Рисунок 2.6).

Точка О называется центром симметрии фигуры. В подобных случаях фигура обладает центральной симметрией. Центром симметрии окружности является центр окружности, а центром симметрии параллелограмма - точка пересечения его диагоналей.

Прямая также обладает центральной симметрией, однако в отличие от окружности и параллелограмма, которые имеют только один центр симметрии у прямой их бесконечно много - любая точка прямой является её центром симметрии. Примером фигуры, не имеющей центра симметрии, является треугольник.

1.3. Поворотная симметрия

Предположим, что объект совмещается сам с собой при повороте вокруг некоторой оси на угол, равный 360°/n (или кратный этой величине), где n = 2, 3, 4, … В этом случае о поворотной симметрии, а указанную ось называют поворотной осью n-го порядка.

Рассмотрим примеры со всеми известными буквами «И» и «Ф». Что касается буквы «И», то у нее есть так называемая поворотная симметрия. Если повернуть букву «И» на 180° вокруг оси, перпендикулярной к плоскости буквы и проходящей через ее центр, то буква совместится сама с собой.

Иными словами, буква «И» симметрична относительно поворота на 180°. Заметим, что поворотной симметрией обладает также буква «Ф».

На рисунке 2.7. даны примеры простых объектов с поворотными осями разного порядка – от 2-го до 5-го. [3]

Перейти к разделу: 1.4. Зеркальная симметрия

obuchonok.ru

10 Красивых примеров симметрии в природе

Симметрия веками оставалась тем свойством, которое занимало умы философов, астрономов, математиков, художников, архитекторов и физиков. Древние греки были просто одержимы ею, и даже сегодня мы, как правило, стараемся применять симметрию во всем: от того, как мы располагаем мебель, до того, как мы укладываем наши волосы.

Никто не знает, почему это явление настолько сильно занимает наши умы, или почему математики стараются увидеть порядок и симметрию в окружающих нас вещах – как бы то ни было, ниже представлены десять примеров того, что симметрия действительно существует, а также того, что мы ею окружены.

Примите во внимание: как только вы об этом задумаетесь, вы уже постоянно будете невольно искать симметрию в окружающих вас предметах.

10. Капуста брокколи Романеско

Скорее всего, вы неоднократно проходили в магазине мимо полки с капустой брокколи Романеско и из-за её необычного вида предполагали, что это генно-модифицированный продукт. Но на самом-то деле, это всего лишь ещё один из многих примеров фрактальной симметрии в природе – хотя и безусловно поразительный.

В геометрии фрактал — это сложный узор, каждая часть которого обладает тем же геометрическим рисунком, что и весь узор в целом. Поэтому в случае капусты брокколи Романеско каждый цветок компактного соцветия обладает той же логарифмической спиралью, что и вся головка (просто в миниатюрном виде). По сути, вся головка этой капусты — это одна большая спираль, которая состоит из маленьких почек похожих на шишки, которые также растут в виде мини-спиралей.

Кстати говоря, капуста брокколи Романеско является родственницей, как капусты брокколи, так и цветной капусты, хотя её вкус и консистенция больше напоминают цветную капусту. Она также богата каротиноидами и витаминами С и К, что означает, что она является полезным и математически красивым дополнением к нашей пище.

9. Медовые соты

Пчёлы это не только ведущие производители мёда – они также знают толк в геометрии. Тысячи лет люди поражались совершенству гексагональных форм в медовых сотах и задавались вопросом о том, как же пчёлы могут инстинктивно создавать такие формы, которые человек может создавать только с линейкой и компасом. Медовые соты являются предметов обойной симметрии, где повторяющийся узор покрывает плоскость (например, плиточный пол или мозаика).

Так каким же образом и почему пчёлы так любят строить шестиугольники? Начнём с того, что математики считают, что эта совершенная форма позволяет пчёлам запасать самое большое количество мёда, используя наименьшее количество воска. При строительстве других форм у пчёл получались бы большие пространства, так как такие фигуры, как например круг – не прилегают друг к другу полностью.

Другие наблюдатели, которые менее склонны верить в сообразительность пчёл, считают, что они формируют гексагональную форму совершенно «случайно». Другими словами, пчёлы на самом деле делают круги, а воск сам по себе принимает гексагональную форму. В любом случае – это произведение природы и довольно-таки потрясающее.

8. Подсолнухи

Подсолнухи могут похвастаться радиальной симметрией и интересным типом симметрии чисел, известным как последовательность Фибоначчи. Последовательность Фибоначчи это: 1, 2, 3, 5, 8, 13, 21, 34, 55, 89, 144 и т.д. (каждое число определяется суммой двух предыдущих чисел).
Если не жалея времени заняться подсчётом количества семенных спиралей в подсолнечнике, мы бы обнаружили, что количество спиралей совпадает с числами Фибоначчи. Более того, огромное количество растений (включая капусту брокколи Романеско) отпускают лепестки, листья и семена в соответствии с последовательностью Фибоначчи, именно поэтому так сложно найти четырёхлистный клевер.

Считать спирали на подсолнечнике может быть довольно трудно, поэтому, если вы хотите самостоятельно проверить этот принцип, попробуйте подсчитать спирали на более крупных вещах, таких как шишки, ананасы, и артишоки.

Но почему цветы подсолнечника и другие растения подчиняются математическим правилам? Как и в случае шестиугольников в улье, всё дело в эффективности. Чтобы не углубляться в технические особенности, можно просто сказать, что цветок подсолнечника может вместить наибольшее количество семян, если каждое семечко расположено под углом, представляющим собой иррациональное число.

Оказывается, самым иррациональным числом является золотое сечение, или Фи, и так уж случилось, что, если мы разделим любое число Фибоначчи или Лукаса на предыдущее число в последовательности, мы получим число, близкое к Фи (+1,618033988749895 ...). Таким образом, в любом растении, растущем в соответствии с последовательностью Фибоначчи, должен быть угол, который соответствует Фи (углу равному числу золотого сечения) между каждым из семян, листьев, лепестков, или веток.

7. Раковина Наутилуса

Помимо растений существуют также некоторые животные, демонстрирующие собою числа Фибоначчи. Например, раковина Наутилуса выросла в «Спираль Фибоначчи». Спираль образуется в результате попытки раковины поддерживать ту же пропорциональную форму по мере своего роста наружу. В случае наутилуса, такая тенденция роста позволяет ему сохранять одинаковую форму тела в течение всей своей жизни (в отличие от людей, чьи тела изменяют свои пропорции по мере взросления).

Как и следовало бы ожидать – в этом правиле существуют и исключения: не каждая раковина наутилуса вырастает в спираль Фибоначчи. Но все они растут в виде своеобразных логарифмических спиралей. И, до того как вы начнёте задумываться над тем, что эти головоногие, пожалуй, знают математику лучше вас, помните, что их раковины растут в такой форме неосознанно для них, и что они просто пользуются эволюционным дизайном, который позволяет моллюску расти, не изменяя форму.

6. Животные

Большинство животных обладает двусторонней симметрией, это означает, что их можно разделить на две одинаковые половины, если линию деления провести по их центру тела. Даже люди обладают двусторонней симметрией, и некоторые учёные считают, что симметрия человека является самым важным фактором того, будем ли мы считать его физически привлекательным или нет. Другими словами, если у вас кривобокое лицо, надейтесь, что у вас есть целая уйма компенсирующих, положительных качеств.

Одно животное, скорее всего, воспринимает важность симметрии в брачных ритуалах слишком серьёзно, и этим животным является павлин. Дарвина очень раздражал этот вид птиц, и в своём письма в 1860 году он написал, что «каждый раз, когда я смотрю на перо из павлиньего хвоста – меня тошнит!».

Для Дарвина хвост павлина казался чем-то обременительным, так как, по его мнению, такой хвост не имел эволюционного смысла, так как он не подходил под его теорию «естественного отбора». Он злился до тех пор, пока он не разработал теорию сексуального отбора, которая заключается в том, что животное развивает у себя определённые качества, которые обеспечат ему лучший шанс спариться. Очевидно, для павлинов сексуальный отбор считается невероятно важным, так как они отрастили себе различные варианты узоров, чтобы привлечь своих дам, начиная с ярких цветов, большого размера, симметрии своих тел и повторяющемся узоре их хвостов.

5. Паутины пауков

Существует примерно 5 000 видов пауков-кругопрядов, и все они создают практически совершенно круглые паутины с почти равноудаленными радиальными опорами, исходящими из центра и связанными по спирали для более эффективной ловли добычи. Ученые до сих пор не нашли ответа на вопрос, почему пауки-кругопряды делают такой большой акцент на геометрию, так как исследования показали, что округлая паутина не удерживает добычу лучше, чем паутина неправильной формы.

Некоторые ученые предполагают, что пауки строят круглые паутины из-за того, что они более прочные, и радиальная симметрия помогает равномерно распределить силу удара, когда жертва попадает в сети, в результате чего в паутине оказывается меньше разрывов. Но остается вопрос: если это действительно лучший способ создания паутины, то почему не все пауки его используют? У некоторых пауков, не являющихся кругопрядами, есть возможность создавать такую же паутину, однако они этого не делают.

Например, недавно обнаруженный в Перу паук строит отдельные части сети одинакового размера и длины (что доказывает его способность «замерять»), но затем он просто соединяет все эти части одинакового размера в случайном порядке в большую паутину, которая не обладает какой-то определённой формой. Может быть эти пауки из Перу знают что-то, чего не знают пауки-кругопряды, или же они ещё просто не оценили всю прелесть симметрии?

4. Круги на полях с урожаем

Дайте парочке приколистов доску, кусок верёвки и покров тьмы и окажется, что люди тоже хороши в создании симметричных форм. На самом деле, именно из-за невероятной симметрии и сложности дизайна кругов на полях с урожаем, люди продолжают верить, что только пришельцы из космоса способны сотворить такое, даже несмотря на то, что люди, создавшие эти круги, сознались.

Возможно, когда-то и была смесь кругов сделанных людьми с теми, которые сделали пришельцы, но прогрессирующая сложность кругов является самым явным доказательством того, что их сделали именно люди. Было бы нелогичным предположить, что пришельцы сделают свои послания ещё сложнее, учитывая то, что люди ещё толком не разобрались в значении простых посланий. Скорее всего, люди учатся друг у друга по примерам созданного и всё больше и больше усложняют свои творения.

Если отбросить в стороны разговоры об их происхождении, можно точно сказать, что на круги приятно смотреть, по большей части из-за того, что они так геометрически впечатляющи. Физик Ричард Тейлор (Richard Taylor) провёл исследование кругов на полях и обнаружил, что помимо того факта, что за ночь на земле создается по крайней мере один круг, большинство их дизайнов отображают широкий спектр симметрии и математических моделей, в том числе фракталов и спиралей Фибоначчи.

3. Снежинки

Даже такие крошечные вещи как снежинки тоже образуются по законам порядка, так как большинство снежинок формируются в виде шестикратной радиальной симметрии со сложными, идентичными рисунками на каждой из её ветвей. Понять, почему растения и животные выбирают симметрию, сложно само по себе, но неодушевлённые объекты – как же им это удаётся?

По-видимому, всё сводится к химии, и в частности к тому, как молекулы воды выстраиваются по мере своего замерзания (кристаллизуются). Молекулы воды приходят в твёрдое состояние путём образования слабых водородных связей друг с другом. Эти связи выравниваются в упорядоченном расположении, которое максимизирует силы притяжения и снижает силы отталкивания, что как раз и является причиной образования гексагональной формы снежинки. Однако всем нам известно, что двух одинаковых снежинок не бывает, так как же снежинка формируется в абсолютной симметрии сама с собой, но не похожа на другие снежинки?

По мере того как каждая снежинка падает с неба она проходит через уникальные атмосферные условия, такие как температура и влажность, которые влияют на то, как кристаллы «растут» на ней. Все ветви снежинки проходят через одни и те же условия и следовательно кристаллизуются одинаковым образом - каждая ветвь является точной копией другой. Ни одна другая снежинка не проходит через те же условия по мере своего спуска, поэтому они все выглядят немного по-разному.

2. Галактика Млечный Путь

Как мы уже видели, симметрия и математические узоры существуют повсюду, куда бы мы ни посмотрели – но ограничены ли эти законы природы только нашей планетой? По всей видимости – нет. Недавно обнаружив новую часть Млечного Пути, астрономы считают, что наша галактика является почти совершенным отражением самой себя. Основываясь на новой информации, учёные получили подтверждение своей теории о том, что в нашей галактике есть только два огромных рукава: Персей и Рукав Центавра.

В дополнение к зеркальной симметрии, Млечный Путь обладает ещё одним удивительным дизайном – похожим на раковины наутилуса и подсолнуха, где каждый рукав галактики представляет собой логарифмическую спираль, берущую начало в центре галактики и расширяющуюся к внешнему краю.

1. Симметрия Солнца и Луны

Учитывая, что диаметр солнца составляет 1,4 миллиона километров, а диаметр луны всего 3,474 километра, очень сложно представить себе, что Луна может закрывать собой солнечный свет и давать нам около пяти солнечных затмений каждые два года.

Так как же это всё-таки происходит? По совпадению, несмотря на то, что ширина солнца примерно в четыреста раз больше ширины луны, оно расположено от нас в четыреста раз дальше, чем луна. Симметрия этого соотношения приводит к тому, что нам кажется, что солнце и луна, одинаковые по размеру, если смотреть с Земли, поэтому луна может с лёгкостью блокировать солнце, когда они находятся на одной линии по отношению к Земле.

Расстояние от Земли до солнца, конечно, может вырасти во время её выхода на орбиту, и когда в это время случается затмение, мы можем полюбоваться ежегодным или неполным затмением, так как солнце не полностью закрыто. Но каждый год или два, всё становится абсолютно симметричным, и мы можем посмотреть на великолепное событие, которое мы называем полным солнечным затмением.

Астрономы не уверены, насколько часто такая симметрия встречается между другими планетами, солнцами и спутниками, однако они думают, что это довольно редкое явление. Даже если это так, то мы не должны предполагать, что мы особенные, потому что всё, как ни странно, является делом случая. Например, каждый год луна удаляется от Земли примерно на четыре сантиметра, это означает, что миллиарды лет назад, каждое солнечное затмение было бы полным.

Если дело пойдёт так и дальше, полные затмения в конце концов исчезнут, за ними исчезнут ежегодные затмения (если планета ещё продержится настолько долго). Поэтому, можно предположить на самом деле, что мы находимся в нужном месте, в нужное время. Но так ли это? Некоторые люди выдвигают теории о том, что симметрия солнца и луны это именно тот фактор, благодаря которому жизнь на Земле стала возможной.

bugaga.ru

Центральная и осевая симметрии [wiki.eduVdom.com]

Центральная симметрия

Две точки А и А1 называются симметричными относительно точки О, если О — середина отрезка АА1 (рис.1). Точка О считается симметричной самой себе.

Пример центральной симметрии


Точки А и А1 – симметричные относительно точки О

Рис.1

Фигура называется симметричной относительно точки О, если для каждой точки фигуры симметричная ей точка относительно точки О также принадлежит этой фигуре. Точка О называется центром симметрии фигуры. Говорят также, что фигура обладает центральной симметрией.

Примерами фигур, обладающих центральной симметрией, являются окружность и параллелограмм (рис.2).

Центральная симметрия


Фигуры, обладающие центральной симметрией

Рис.2

Центром симметрии окружности является центр окружности, а центром симметрии параллелограмма — точка пересечения его диагоналей. Прямая также обладает центральной симметрией, однако в отличие от окружности и параллелограмма, которые имеют только один центр симметрии (точка О на рис.2), у прямой их бесконечно много — любая точка прямой является ее центром симметрии.

Осевая симметрия

Две точки А и А1 называются симметричными относительно прямой а, если эта прямая проходит через середину отрезка АА1 и перпендикулярна к нему (рис.3). Каждая точка прямой а считается симметричной самой себе.

Осевая симметрия


Точки А и А1 — симметричные относительно прямой а

Рис.3

Фигура называется симметричной относительно прямой а, если для каждой точки фигуры симметричная ей точка относительно прямой а также принадлежит этой фигуре. Прямая а называется осью симметрии фигуры.

Примеры таких фигур и их оси симметрии изображены на рисунке 4.

Осевая симметрия

Рис.4

Заметим, что у окружности любая прямая, проходящая через ее центр, является осью симметрии.

Сравнение симметрий

Центральная и осевая симметрии


Построение треугольника (а) симметрично относительно оси (б) и точки (в)

Рис.5

Пример

Сколько всего осей симметрии имеет фигура, изображённая на рисунке?

Дополнительно


subjects/geometry/центральная_и_осевая_симметрии.txt · Последние изменения: 2013/10/12 02:02 —

wiki.eduvdom.com

Оси симметрии. Фигуры, имеющие ось симметрии. Что такое вертикальная ось симметрии

Жизнь людей наполнена симметрией. Это удобно, красиво, не нужно выдумывать новых стандартов. Но что она есть на самом деле и так ли красива в природе, как принято считать?

Симметрия

С древних времен люди стремятся упорядочить мир вокруг себя. Поэтому что-то считается красивым, а что-то не очень. С эстетической точки зрения как привлекательные рассматриваются золотое и серебряное сечения, а также, разумеется, симметрия. Этот термин имеет греческое происхождение и дословно означает "соразмерность". Разумеется, речь идет не только о совпадении по этому признаку, но также и по некоторым другим. В общем смысле симметрия - это такое свойство объекта, когда в результате тех или иных образований результат равен исходным данным. Это встречается как в живой, так и в неживой природе, а также в предметах, сделанных человеком.

Прежде всего термин "симметрия" употребляется в геометрии, но находит применение во многих научных областях, причем его значение остается в общем и целом неизменным. Это явление достаточно часто встречается и считается интересным, поскольку различается несколько его видов, а также элементов. Использование симметрии также интересно, ведь она встречается не только в природе, но и в орнаментах на ткани, бордюрах зданий и многих других рукотворных предметах. Стоит рассмотреть это явление поподробнее, поскольку это крайне увлекательно.

Употребление термина в других научных областях

В дальнейшем симметрия будет рассматриваться с точки зрения геометрии, однако стоит упомянуть, что данное слово используется не только здесь. Биология, вирусология, химия, физика, кристаллография - все это неполный список областей, в которых данное явление изучается с различных сторон и в разных условиях. От того, к какой науке относится этот термин, зависит, например, классификация. Так, разделение на типы серьезно варьируется, хотя некоторые основные, пожалуй, остаются неизменными везде.

Классификация

Различают несколько основных типов симметрии, из которых наиболее часто встречаются три:

  • Зеркальная - наблюдается относительно одной или нескольких плоскостей. Также термин употребляется для обозначения типа симметрии, когда используется такое преобразование, как отражение.
  • Лучевая, радиальная или осевая - существует несколько вариантов в различных источниках, в общем смысле - симметрия относительно прямой. Может рассматриваться как частный случай вращательной разновидности.
  • Центральная - наблюдается симметричность относительно некой точки.

Кроме того, в геометрии различают также следующие типы, они встречаются значительно реже, но не менее любопытны:

  • скользящая;
  • вращательная;
  • точечная;
  • поступательная;
  • винтовая;
  • фрактальная;
  • и т. д.

В биологии все виды называются несколько иначе, хотя по сути могут быть такими же. Подразделение на те или иные группы происходит на основании наличия или отсутствия, а также количества некоторых элементов, таких как центры, плоскости и оси симметрии. Их следует рассмотреть отдельно и более подробно.

Базовые элементы

В явлении выделяют некоторые черты, одна из которых обязательно присутствует. Так называемые базовые элементы включают в себя плоскости, центры и оси симметрии. Именно в соответствии с их наличием, отсутствием и количеством определяется тип.

Центром симметрии называют точку внутри фигуры или кристалла, в которой сходятся линии, соединяющие попарно все параллельные друг другу стороны. Разумеется, он существует не всегда. Если есть стороны, к которым нет параллельной пары, то такую точку найти невозможно, поскольку ее нет. В соответствии с определением, очевидно, что центр симметрии - это то, через что фигура может быть отражена сама на себя. Примером может служить, например, окружность и точка в ее середине. Этот элемент обычно обозначается как C.

Плоскость симметрии, разумеется, воображаема, но именно она делит фигуру на две равные друг другу части. Она может проходить через одну или несколько сторон, быть параллельной ей, а может делить их. Для одной и той же фигуры может существовать сразу несколько плоскостей. Эти элементы обычно обозначаются как P.

Но, пожалуй, наиболее часто встречается то, что называют "оси симметрии". Это нередкое явление можно увидеть как в геометрии, так и в природе. И оно достойно отдельного рассмотрения.

Оси

Часто элементом, относительно которого фигуру можно назвать симметричной,
выступает прямая или отрезок. В любом случае речь идет не о точке и не о плоскости. Тогда рассматриваются оси симметрии фигур. Их может быть очень много, и расположены они могут быть как угодно: делить стороны или быть параллельными им, а также пересекать углы или не делать этого. Оси симметрии обычно обозначаются как L.

Примерами могут служить равнобедренные и равносторонние треугольники. В первом случае будет вертикальная ось симметрии, по обе стороны от которой равные грани, а во втором линии будут пересекать каждый угол и совпадать со всеми биссектрисами, медианами и высотами. Обычные же треугольники ею не обладают.

Кстати, совокупность всех вышеназванных элементов в кристаллографии и стереометрии называется степенью симметрии. Этот показатель зависит от количества осей, плоскостей и центров.

Примеры в геометрии

Условно можно разделить все множество объектов изучения математиков на фигуры, имеющие ось симметрии, и такие, у которых ее нет. В первую категорию автоматически попадают все правильные многоугольники, окружности, овалы, а также некоторые частные случаи, остальные же попадают во вторую группу.

Как и в случае, когда говорилось про ось симметрии треугольника, данный элемент для четырехугольника существует не всегда. Для квадрата, прямоугольника, ромба или параллелограмма он есть, а для неправильной фигуры, соответственно, нет. Для окружности оси симметрии - это множество прямых, которые проходят через ее центр.

Кроме того, интересно рассмотреть и объемные фигуры с этой точки зрения. Хотя бы одной осью симметрии помимо всех правильных многоугольников и шара будут обладать некоторые конусы, а также пирамиды, параллелограммы и некоторые другие. Каждый случай необходимо рассматривать отдельно.

Примеры в природе

Зеркальная симметрия в жизни называется билатеральной, она встречается наиболее
часто. Любой человек и очень многие животные тому пример. Осевая же называется радиальной и встречается гораздо реже, как правило, в растительном мире. И все-таки они есть. Например, стоит подумать, сколько осей симметрии имеет звезда, и имеет ли она их вообще? Разумеется, речь идет о морских обитателях, а не о предмете изучения астрономов. И правильным ответом будет такой: это зависит от количества лучей звезды, например пять, если она пятиконечная.

Кроме того, радиальная симметрия наблюдается у многих цветков: ромашки, васильки, подсолнухи и т. д. Примеров огромное количество, они буквально везде вокруг.


Аритмия

Этот термин, прежде всего, напоминает большинству о медицине и кардиологии, однако он изначально имеет несколько другое значение. В данном случае синонимом будет "асимметрия", то есть отсутствие или нарушение регулярности в том или ином виде. Ее можно встретить как случайность, а иногда она может стать прекрасным приемом, например, в одежде или архитектуре. Ведь симметричных зданий очень много, но знаменитая Пизанская башня чуть наклонена, и хоть она не одна такая, но это самый известный пример. Известно, что так получилось случайно, но в этом есть своя прелесть.

Кроме того, очевидно, что лица и тела людей и животных тоже не полностью симметричны. Проводились даже исследования, согласно результатам которых "правильные" лица расценивались как неживые или просто непривлекательные. Все-таки восприятие симметрии и это явление само по себе удивительны и пока не до конца изучены, а потому крайне интересны.

fb.ru

Примеры центральной симметрии - презентация по Геометрии

Презентация на тему: Примеры центральной симметрии

Скачать эту презентацию

Скачать эту презентацию

№ слайда 1 Описание слайда:

Подготовили ученики X «А» класса: Зацепина Екатерина, Павлова Юлия. Центральная симметрия. 5klass.net

№ слайда 2 Описание слайда:

Центральная симметрия. Определение: Фигура называется симметричной относительно точки О, если для каждой точки фигуры симметричная ей точка относительно точки О также принадлежит этой фигуре. Точка О называется центром симметрии фигуры. Говорят также, что фигура обладает центральной симметрией.

№ слайда 3 Описание слайда:

Приведём примеры фигур, обладающие центральной симметрией: Простейшими фигурами, обладающими центральной симметрией, является окружность и параллелограмм. Центром симметрии окружности является центр окружности,а центром симметрии параллелограмма - точка пересечения его диагоналей. O O

№ слайда 4 Описание слайда:

А В О Две точки А и В называются симметричными относительно точки О, если О - середина отрезка АВ. Точка О считается симметричной самой себе.

№ слайда 5 Описание слайда:

Например: На рисунке точки М и М1, N и N1 симметричны относительно точки О, а точки Р и Q не симметричны относительно этой точки. М М1 N N1 О Р Q

№ слайда 6 Описание слайда:

Центральная симметрия в прямоугольной системе координат: Если в прямоугольной системе координат точка А имеет координаты (x0;y0), то координаты (-x0;-y0) точки А1, симметричной точке А относительно начала координат, выражаются формулами x0 = -x0 y0 = -y0 у х 0 А(x0;y0) А1(-x0;-y0) x0 -x0 y0 -y0

№ слайда 7 Описание слайда:

Центральная симметрии в прямоугольных трапециях: О

№ слайда 8 Описание слайда:

Центральная симметрия в квадратах: О

№ слайда 9 Описание слайда:

Центральная симметрия в параллелограммах: О

№ слайда 10 Описание слайда:

Центральная симметрия в шестиконечной звезде: О

№ слайда 11 Описание слайда:

Точка О является центром симметрии, если при повороте вокруг точки О на 180° фигура переходит сама в себя. О 180°

№ слайда 12 Описание слайда:

Прямая также обладает центральной симметрией, однако в отличие от других фигур, которые имеют только один центр симметрии(точка О на рисунках), у прямой их бесконечно много - любая точка прямой является её центром симметрии. Примером фигуры, не имеющей центра симметрии, является треугольник. А В С

№ слайда 13 Описание слайда:

Применение на практике: Примеры симметрии в растениях: Вопрос о симметрии в растениях возник ещё в 5 веке до н. э. На явление симметрии в живой природе обратили внимание в Древней Греции пифагорейцы в связи с развитием ими учения о гармонии. В 19 веке появлялись отдельные работы, касающиеся этой темы. А в 1961 году как результат многовековых исследований, посвященных поиску красоты и гармонии окружающей нас природы, появилась наука биосимметрика. Центральная симметрия характерна для различных плодов: голубика, черника, вишня, клюква. Рассмотрим разрез любой из этих ягод. В разрезе она представляет собой окружность, а окружность, как нам известно, имеет центр симметрии. Центральную симметрию можно наблюдать на изображении таких цветов как цветок одуванчика, цветок мать-и-мачехи, цветок кувшинки, сердцевина ромашки, а в некоторых случаях центральной симметрией обладает и изображение всего цветка ромашки. Её сердцевина представляет собой окружность, и поэтому центрально симметрична, так как мы знаем, что окружность имеет центр симметрии. Весь же цветок обладает центральной симметрией только в случае четного количества лепестков. В случае же нечетного количества лепестков, вспомните анютины глазки , он обладает только осевой. Выводы: По нашим наблюдениям, в любом растении можно найти какую-то его часть, обладающую осевой или центральной симметрией. Это могут быть листья, цветы, стебли, стволы деревьев, плоды, и более мелкие части, такие как сердцевина цветка, пестик, тычинки и другие. Осевая симметрия присуща различным видам растений и грибам, и их частям. Центральная симметрия наиболее характерна для плодов растений и некоторых цветов.

№ слайда 14 Описание слайда:

Ромашка Анютины глазки

№ слайда 15 Описание слайда:

Центральная симметрия в архитектуре: Во второй половине XVIII - первой трети XIX века Петербург приобрёл воспетый А.С. Пушкиным “строгий, стройный вид”, который придала городу архитектура классицизма. Все здания, построенные в стиле классицизм, имеют четкие прямолинейные симметричные композиции. В начале XIX века по проекту А.Н. Воронихина было сооружено выдающееся произведение искусства – Казанский собор. Перед Казанским собором симметрично установлены памятники М.И. Кутузову и М.Б. Барклаю-де-Толли, полководцам, разгромившим армию Наполеона. Примером современных зданий, построенных в середине ХХ века, является гостиница “Прибалтийская”. Симметричность, как видно из чертежа присутствует как в общей композиции, так и в каждой из трех его составляющих:средняя часть – арка с куполом и пикой на вершине, два боковых крыла гостиницы. Выводы: Принципы симметрии являются основополагающими для любого архитектора, но вопрос о соотношении между симметрией и асимметрией каждый архитектор решает по-разному. Асимметричное в целом сооружение может являть собой гармоническую композицию симметричных элементов. Удачное решение определяется талантом зодчего, его художественным вкусом и его пониманием прекрасного. Прогуляйтесь по нашему городу и убедитесь, что удачных решений может быть очень много, но неизменным остается одно – стремление архитектора к гармонии, а это в той или иной степени связано с симметрией.

№ слайда 16 Описание слайда:

Гостиница «Прибалтийская» Казанский собор

№ слайда 17 Описание слайда:

Центральная симметрия в зоологии: Рассмотрим, как связаны животный мир и симметрия. Центральная симметрия наиболее характерна для животных, ведущих подводный образ жизни. А также есть пример асимметричных животных: инфузория-туфелька и амёба Выводы: Симметрию живого существа определяет направление его движения. Для живых существ, для которых ведущим направлением является направление движения “вперед”, наиболее характерна осевая симметрия. Так как в этом направлении животные устремляются за пищей и в этом же спасаются от преследователей. А нарушение симметрии привело бы к торможению одной из сторон и превращению поступательного движения в круговое. Центральная симметрия чаще встречается в форме животных, обитающих под водой. Асимметрию можно наблюдать на примере простейших животных.

№ слайда 18 Описание слайда:

Лягушка Паук Бабочка

№ слайда 19 Описание слайда:

инфузория-туфелька и амёба

№ слайда 20 Описание слайда:

Центральная симметрия в транспорте: Центральная симметрия не совместима с формой наземного и подземного транспорта. Причиной этого служит его направление движения. При рассмотрении вида сверху трамвая, электровоза, телеги, мы видим, что ось симметрии проходит вдоль направления движения. Таким образом, центральную симметрию следует искать в воздушном и подводном транспорте, т. е. в таких видах, где направления: вперед, назад, вправо, влево, – равноценны. Один из таких видов транспорта – это воздушный шар. Другой пример воздушного транспорта – это парашют. Ученые относят его изобретение еще к 13 веку. На нашем чертеже мы представили вид сверху воздушного шара. Отметим, что он аналогичен виду сверху парашюта. Как мы видим, эта фигура центрально симметрична. О – центр симметрии. Дальнейшее развитие парашют получил в изобретении нашими учеными “надувного тормозного устройства”. Оно предназначено для спуска грузов и человека с орбиты. Надувное тормозное устройство представляет собой эластичную оболочку, наполняемую в космосе. Она имеет гибкую теплозащиту и дополнительную надувную оболочку. На базе него предполагается конструирование и спасательных устройств, которые могут использоваться, например, при пожаре в многоэтажных домах. Вид сверху этого устройства представляет собой круг. А круг, как мы знаем, не только обладает осевой симметрией, но и центральной. Центр симметрии совпадает с центром круга. Выводы: Вид сверху и вид спереди различных видов транспорта обладает либо центральной, либо осевой симметрией. Для наземного вида транспорта в большей степени характерна осевая симметрия. Причиной этого является направление его движения. Центральная симметрия чаще встречается в форме воздушного и подводного транспорта, для которого направления: вправо, влево, вперед, назад, – равноценны. Модели транспорта будущего в той же степени, что и модели настоящего и прошлого обладают различными видами.

№ слайда 21 Описание слайда:

Надувное тормозное устройство Капсула поезда Парашют (вид сверху)

№ слайда 22 Описание слайда:

А также с симметрией мы часто встречаемся в искусстве, архитектуре, технике, быту. В большинстве случаев симметричны относительно центра узоры на коврах, тканях, комнатных обоях. Симметричны многие детали механизмов, например зубчатые колёса.

№ слайда 23 Описание слайда:

Аксиомы стереометрии и планиметрии Подготовила: ученица Х «А» класса Зацепина Екатерина.

№ слайда 24 Описание слайда:

Аксиомы стереометрии.

№ слайда 25 Описание слайда:

Аксиома 1(С1): Какова бы ни была плоскость, существуют точки, принадлежащие этой плоскости, и точки, не принадлежащие ей. А α , В α α Α в Э Э

№ слайда 26 Описание слайда:

Аксиома 2(С2): Если две различные плоскости имеют общую точку, то они пересекаются по одной прямой, проходящей через эту точку. β α А α А β Э Э } α β = m U m А

№ слайда 27 Описание слайда:

Аксиома 3(С3): Если две различные прямые имеют общую точку, то через них можно провести плоскость, и притом только одну. a b = d a, b, d α U Э d α в a

№ слайда 28 Описание слайда:

Аксиомы планиметрии.

№ слайда 29 Описание слайда:

Аксиома I: Какова бы не была прямая, существуют точки, принадлежащие этой прямой, и точки, не принадлежащие ей. Через любые две точки можно провести прямую, и только одну. А α , В α Э Э А В А,В=α α α А В

№ слайда 30 Описание слайда:

Аксиома II: Из трёх точек на прямой одна и только одна лежит между двумя другими. А В С

№ слайда 31 Описание слайда:

Аксиома III: Каждый отрезок имеет определённую длину, большую нуля. Длина отрезка равна сумме длин частей, на которые он разбивается любой его точкой. А В АВ > 0

№ слайда 32 Описание слайда:

Аксиома III: Каждый отрезок имеет определённую длину, большую нуля. Длина отрезка равна сумме длин частей, на которые он разбивается любой его точкой. А В АC + CВ > 0 C

№ слайда 33 Описание слайда:

Аксиома III: Каждый отрезок имеет определённую длину, большую нуля. Длина отрезка равна сумме длин частей, на которые он разбивается любой его точкой. А В АC+CВ > 0 C

№ слайда 34 Описание слайда:

Аксиома IV: Прямая, принадлежащая плоскости, разбивает эту плоскость на две полуплоскости: β и φ β α φ

№ слайда 35 Описание слайда:

Аксиома V: Каждый угол имеет определённую градусную меру, большую нуля. Развёрнутый угол равен 180 . Градусная мера угла равна сумме, градусных мер углов,на которые он разбивается любым лучом, проходящим между его сторонами. 180 В А

№ слайда 36 Описание слайда:

Аксиома VI: На любой полупрямой от её начальной точки можно отложить отрезок заданной длины, и только один. А В АВ α Э

№ слайда 37 Описание слайда:

Аксиома VII: От полупрямой на содержащей её плоскости в заданную полуплоскость можно отложить угол с заданной градусной мерой, меньшей 180, и только один. φ = 45°< 180° α b φ=45°

№ слайда 38 Описание слайда:

Аксиома VIII: Каков бы ни был треугольник, существует равный ему треугольник в данной плоскости в заданном расположении относительно данной полупрямой в этой плоскости. α а А В С А1 В1 С1

№ слайда 39 Описание слайда:

Аксиома IX: На плоскости через данную точку, не лежащую на данной прямой, можно провести не более одной прямой, параллельной данной. А α β φ B

№ слайда 40 Описание слайда:

Аксиома 1(С1): Какова бы ни была плоскость, существуют точки, принадлежащие этой плоскости, и точки, не принадлежащие ей. А α , В α α Α в Э Э

№ слайда 41 Описание слайда:

Аксиома I: Какова бы не была прямая, существуют точки, принадлежащие этой прямой, и точки, не принадлежащие ей. Через любые две точки можно провести прямую, и только одну. А α , В α Э Э А В А,В=α α α А В

ppt4web.ru

Comments